Testing distribution in deconvolution problems

نویسنده

  • Denys Pommeret
چکیده

Abstract: In this paper we consider a random variable Y contamined by an independent additive noise Z. We assume that Z has known distribution. Our purpose is to test the distribution of the unobserved random variable Y . We propose a data driven statistic based on a development of the density of Y + Z, which is valid in the discrete case and in the continuous case. The test is illustrated in both cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing the Suitability of Polynomial Models in Errors-in-variables Problems by Peter Hall

A low-degree polynomial model for a response curve is used commonly in practice. It generally incorporates a linear or quadratic function of the covariate. In this paper we suggest methods for testing the goodness of fit of a general polynomial model when there are errors in the covariates. There, the true covariates are not directly observed, and conventional bootstrap methods for testing are ...

متن کامل

Testing the Suitability of Polynomial Models in Errors - in - Variables Problems

A low-degree polynomial model for a response curve is used commonly in practice. It generally incorporates a linear or quadratic function of the covariate. In this paper we suggest methods for testing the goodness of fit of a general polynomial model when there are errors in the covariates. There, the true covariates are not directly observed, and conventional bootstrap methods for testing are ...

متن کامل

Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...

متن کامل

Weak convergence of the supremum distance for supersmooth kernel deconvolution

We derive the asymptotic distribution of the supremum distance of the deconvolution kernel density estimator to its expectation for certain supersmooth deconvolution problems. It turns out that the asymptotics are essentially different from the corresponding results for ordinary smooth deconvolution.

متن کامل

Simple Kernel Estimators for

We consider deconvolution problems where the observations are equal in distribution to Here the random variables in the sums are independent, the E i are exponentially distributed, the L i are Laplace distributed and Y has an unknown distribution F which we want to estimate. The constants i or i are given. These problems include exponential, gamma and Laplace deconvolution. We derive inversion ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009